R crash-course materials
Day 1
1.1. R-basics
- Course presentation;
- How to prepare a working directory (rules of good data science);
- File names and type of data files;
- The R studio IDE;
- Reading and Writing Data;
- Scripting;
- Packages (and GitHub);
- Ask for help;
1.2. Workflow basics
- Using the console
- Practice
- Using the scripts
- Practice
Day 2
2. Data wrangling
- Welcome to the
Tidyverse
; filter()
#Pick observations by their valuesarrange()
#Reorder the rowsselect()
#Pick variables by their namesmutate()
#Create new variables with functions of existing variablessummarise()
#Collapse many values down to a single summarygroup_by()
#which changes the scope of each function from the entire dataset to a group- saving data
2.1. Fishing effort exercise 1
3. Data visualization
- Welcome to ggplot2
- Exploratory data analysis
- Data visualization
3.1. Fishing effort exercise 2
Day 3
4. R-functions and iterations
- R-functions and shortcuts;
- The
purrr
package;
5. Knitting
- the
rmarkdown
package;
Weblinks
Basics
- R for data science: https://r4ds.had.co.nz
- Modern R dive: https://moderndive.com/index.html
- Data wrangling with R: https://cengel.github.io/R-data-wrangling/
- The Tidyverse style guide: https://style.tidyverse.org/index.html
Advanced
- Advanced R: https://adv-r.hadley.nz/
- Efficient R programming: https://bookdown.org/csgillespie/efficientR/
- R programming for Data Science: https://bookdown.org/rdpeng/rprogdatascience/
- Hands on programming with R: https://rstudio-education.github.io/hopr/
Visualization
- Fundamentals of data visualization: https://serialmentor.com/dataviz/
- Interactive animations: https://plotly-r.com/
- Top 50 visualization with R: http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html
- The R graph gallery: https://www.r-graph-gallery.com/
- Graphs cookbook: http://www.cookbook-r.com/Graphs/
Documents creation
- Rmarkdown definitive guide: https://bookdown.org/yihui/rmarkdown/
- Bookdown & blogdown: https://bookdown.org
Miscellaneous tutorials
- Getting started with R and R-studio: https://ourcodingclub.github.io/2016/11/13/intro-to-r.html
- Coding Club Tutorials: https://ourcodingclub.github.io/tutorials/
- Cleaning and visualizing genomic data: http://varianceexplained.org/r/tidy-genomics/
- R for Reproducible Scientific Analysis: https://swcarpentry.github.io/r-novice-gapminder/
- R-Studio Primers: https://rstudio.cloud/learn/primers
Written on February 17, 2021